If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9k^2-19k=-9k+18
We move all terms to the left:
9k^2-19k-(-9k+18)=0
We get rid of parentheses
9k^2-19k+9k-18=0
We add all the numbers together, and all the variables
9k^2-10k-18=0
a = 9; b = -10; c = -18;
Δ = b2-4ac
Δ = -102-4·9·(-18)
Δ = 748
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{748}=\sqrt{4*187}=\sqrt{4}*\sqrt{187}=2\sqrt{187}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{187}}{2*9}=\frac{10-2\sqrt{187}}{18} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{187}}{2*9}=\frac{10+2\sqrt{187}}{18} $
| -(2x+4)=3x=5 | | 2.5(1-t)=45t. | | 6w=–1026 | | 15j+15j+–17j=–13 | | 5.3-5.3t=2.8+2.8t | | 16.1-2.8x=1.5x | | 5x+5=4x+7=75 | | 7.4x+3.8=5.9x-9.7=0 | | 12m+9=6m+14 | | Yx3+8=20 | | 14w=10+9w | | -3(3w-1)+8w=6(w+3) | | -4(3w-1)+8w=6(w+3) | | -6(v+7)=7v+10 | | 7.501=10x | | -8v+4(1v+6)=20 | | 5=z2+ 7 | | -1+3x=2x-13 | | -(y-5)-3(2y-1)=3(y+1)-5 | | 6(4j-6)=24-36j | | (15x+5)+(10x+25)=180 | | 2x+2.8=117.6 | | 4=w/5-17 | | –4m+–10=–14 | | 2(8f-5)=10f-10 | | 7.50=0.10x | | 5(5x+10)-15x=150 | | 2.6-x=40.9 | | 10x-3(x-7)=-14 | | -3(5x+7)+5x=49 | | -5(10-2x)=50 | | -3(2x+8)=6 |